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Abstract

A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version

�nite element method with shape functions based on Legendre polynomials, torsion solutions for generic

cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral

and triangular elements are discussed, and numerical examples are provided.

Introduction

There are only a few known exact solutions for the torsion of beams. Among the exact solutions are those

for elliptical, rectangular, and triangular cross-sections. The reason so few solutions exist is a problem of

elasticity itself; analytical solutions to two- and three-dimensional boundary value problems for irregular

areas or volumes are simply di�cult to discover. Thus, approximate solutions have to be found. In this

context, we extend the highly accurate p-�nite element method to the two-dimensional boundary value

problem of beam torsion.

Based on Legendre polynomials, the p-�nite element method o�ers exceptional convergence compared

to the traditional h-version of the �nite element method (Babuska [1]). In the p-version �nite element

method, the error in the solution is controlled by the polynomial order p, whereas in the h-version,

the error is a function of the diameter h of the largest element. The advantages of p-FEM have been

exploited in several areas, including elasticity, heat transfer (Smith [5]), and uid dynamics. This is the

�rst implementation of the method to the torsion problem. Numerical examples will show that its use in

torsion problems is indeed valuable. The convergence of the solutions and its derivatives over the range

from linear p = 1 elements to eighth-order p = 8 elements demonstrates the e�ectiveness of p-FEM to

torsion.

Classical Theory of Torsion

In this section, we present the classical theory for torsion of beams for isotropic materials. If we consider

a three-dimensional beam of length L with the cross-section shown in Figure 1 in the (x1; x2) plane, at the

end x3 = L, a torque is applied. At the end x3 = 0, the beam is constrained against rotation (translation

of u1 and u2 displacements in the plane). Between the ends, the boundary � is free of stress.

The state of stress in cross-section domain 
 must satisfy the equations of equilibrium

divT = 0; (1)

where for a linearly elastic, isotropic material, the stress tensor T is expressed in terms of the Lam�e

constants � and � and the linear strain tensor E as

T = � (trE) I+ 2�E: (2)

The linear strain tensor E is given by

E =
1

2

�
gradu+ (gradu)T

�
; (3)

dx1

dx2

x 1

x 2

x 3

nds

Ω
Γ

Figure 1. Torsion problem domain.
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where u is the displacement vector. In addition, the stresses must satisfy the condition on � of

Tn = 0; (4)

where n is the normal to the surface at any point on �.

To solve the set of equations above, we assume a solution (Fung [4], p. 164)

u1 = ��x2x3; u2 = �x1x3; and u3 = ��(x1; x2); (5)

where � is the angle of twist per unit length of the beam, and �(x1; x2) is the warping function. In (5),

it is assumed that � is small such that the strains are strictly linear. Inserting (5) into (2), we �nd that

the only nonzero stresses are

T13 = ��

�
@�

@x1
� x2

�
and T23 = ��

�
@�

@x2
+ x1

�
: (6)

It should be noted that equations (6) identically satisfy (1) if we introduce the relations

T13 = ��
@ 

@x2
and T23 = ���

@ 

@x1
; (7)

where  (x1; x2) is the stress function.

Di�erentiating the �rst equation in (6) with respect to x2 and the second equation in (6) with respect

to x1 and using (7), we have
@T13

@x2
= ��

�
@2�

@x1@x2
� 1

�
= ��

@2 

@x22
(8)

and
@T23

@x1
= ��

�
@2�

@x1@x2
+ 1

�
= ���

@2 

@x21
: (9)

Subtracting equation (9) from (8) yields

@2 

@x21
+
@2 

@x22
= �2; (10)

which is the governing di�erential equation for the torsion problem for a linearly elastic, isotropic material.

Recalling equation (4), we must meet the boundary condition, which is written as

T31n1 + T32n2 = ��

�
@ 

@x2
n1 �

@ 

@x1
n2

�
= 0: (11)

From Figure 1, we see that

n1 =
dx2

ds
and n2 = �

dx1

ds
; (12)

such that (11) can be rewritten as
@ 

@s
= 0 on �: (13)

Therefore,  is constant on the boundary �, and we can set  = 0 on � without loss of generality.

The magnitude of the shear stress is given by

� =

q
T 2
13 + T 2

23 = ��

s�
@ 

@x1

�2

+

�
@ 

@x2

�2

(14)

anywhere in the cross-section. In addition, the moment of the external forces at the end of the beam is

M =

Z



(x1T23 � x2T13) d
 = ���

Z



�
x1

@ 

@x1
+ x2

@ 

@x2

�
d
 = D�; (15)

2



ζ

η

C1 C2

C3C4

E2E4

E3

E1

Figure 2. Standard quadrilateral element geometry.

where D is the torsional rigidity of the cross-section, or

D = ��

Z



�
x1

@ 

@x1
+ x2

@ 

@x2

�
d
 = 2�

Z



 d
; (16)

where Green's theorem and  = 0 on � have been used.

In summary, the torsion problem is governed by the equations

r2 = �2 in 
;  = 0 on �; (17)

with the stress magnitude given by (14) and the torsional rigidity by (16).

Finite Element Solution of the Torsion Problem

To solve equation (17), we apply Galerkin's method. This method requires us to write the error residual

R = r2 + 2 (18)

and integrate it against a set of trial functions Ni over 
 such thatZ



RNid
 =

Z



�
r2 + 2

�
Nid
 = 0: (19)

The �rst term in equation (19) can be expanded through integration by parts asZ



r2 Nid
 = �

Z



�
@ 

@x1

@Ni

@x1
+
@ 

@x2

@Ni

@x2

�
d
+

Z
�

Ni

@ 

@x1
n1d� +

Z
�

Ni

@ 

@x2
n2d�; (20)

where the boundary terms vanish if (13) is used.

If we write the stress function  as

 =

NsX
j=1

ajNj; (21)

where aj are constant coe�cients, then (19) can be rewritten asZ



�
@Ni

@x1

@Nj

@x1
+
@Ni

@x2

@Nj

@x2

�
d
aj =

Z



2Nid
: (22)

In terms of a system of equations, we have

[K]fag = fFg: (23)

The parameter Ns is the number of trial shape functions Nj (or Ni) to be used in the solution.
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Shape Functions for Quadrilateral Elements

Before actually stating the shape functions used for the two-dimensional quadrilateral element, we should

examine the geometry used. Figure 2 shows the quadrilateral element to be examined. The element has

4 corners, 4 edges, and one interior, each of which must have shape functions associated with it. The

corners in Figure 2 are labeled C1 to C4, and the coordinates of the corners in a (�; �) coordinate system

are located at locations (�1;�1). The origin (�; �) = (0; 0) is located at the center of the quadrilateral

element in the parametric space.

There is one mode associated with each corner for polynomial levels of p = 1 and up. These shape

functions are given by the functions

NCi = f(�; �); (24)

where the C in (24) denotes a corner mode, and i refers to the corner number. Explicitly, the corner

modes are given by

NC1 =
1

4
(1 � �)(1 � �); (25)

NC2 =
1

4
(1 + �)(1 � �); (26)

NC3 =
1

4
(1 + �)(1 + �); (27)

and

NC4 =
1

4
(1� �)(1 + �): (28)

Starting with p = 2, edge modes for the quadrilateral element are prescribed. For each additional

polynomial level, four modes are added to the total number of degrees of freedom for the element,

corresponding to the number of edges on the element. Thus, for any given polynomial order, we have

4(p� 1) edge modes, de�ned by

N
(i)

Ep(�; �) = f(�; �); (29)

where E refers to the fact that this is an edge mode, p is the polynomial order of the element, and i is

the edge number. These modes are written in terms of integrals of the Legendre polynomials such that

N
(1)

Ei =
1

2
(1� �)�i(�); (30)

N
(2)

Ei =
1

2
(1 + �)�i(�); (31)

N
(3)
Ei =

1

2
(1 + �)�i(�); (32)

and

N
(4)

Ei =
1

2
(1� �)�i(�); (33)

where the functions �i are de�ned by

�i(�) =

r
2i� 1

2

Z �

�1

Pi�1(x)dx; (34)

and the functions Pj(x) are the Legendre polynomials of order j.

For polynomial levels of degree p = 4 and up, internal modes become evident in the quadrilateral

element. The internal modes are restricted to nonzero values inside the element (not at the corners or

edges). The internal mode for a p level of 4 is given by

N
(0)
4 = (1� �2)(1 � �2); p � 4 (35)

where the the subscript refers to the polynomial level, and the superscript denotes that this is an internal

mode.
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p Corner Modes Edge Modes Internal Modes Total DOF

1 4 4

2 4 4 8

3 4 8 12

4 4 12 1 17

5 4 16 3 23

6 4 20 6 30

7 4 24 10 38

8 4 28 15 47

Table 1. Degree of freedom chart for quadrilateral elements

ζ

η

E1

E3 E2

C1 C2

C3

Figure 3. Standard triangular element geometry.

For higher modes, we can write the shape functions in terms of the shape functions for p = 4. That

is, the shape functions for p = 5 and up have kernels composed of the shape function (35). For p = 5,

there are two additional shape functions, given by

N
(0)

5;f1;2g
= N

(0)
4 fP1(�); P1(�)g; p � 5 (36)

where Pi(�) are Legendre polynomials of order i. The notation used in equation (36) associates two

di�erent functions with two di�erent shape functions. For example, in equation (36), we have two shape

functions, N
(0)
5;1 and N

(0)
5;2 written as functions of P1(�) and P1(�), respectively.

For the higher polynomial levels, we can write the face shape functions like

N
(0)

6;f1;2;3g
= N

(0)
4 fP2(�); P2(�); P1(�)P1(�)g; p � 6 (37)

N
(0)

7;f1;2;3;4g
= N

(0)
4 fP3(�); P3(�); P2(�)P1(�); P1(�)P2(�)g; p � 7 (38)

and

N
(0)

8;f1;2;3;4;5g
= N

(0)
4 fP4(�); P4(�); P3(�)P1(�); P1(�)P3(�); P2(�)P2(�)g: p � 8 (39)

Now that the shape functions have been written, we can easily determine the number of equations

that will be needed for the analysis. We shall refer to the number of equations associated with a solution

variable as the number of degrees of freedom per variable. The number of equations associated with each

polynomial order is given in Table 1.

Shape Functions for Triangular Elements

The shape functions for triangular elements are slightly more di�cult since the element contains a slanted

edge, as shown in Figure 3. The element has 3 corners, 3 edges, and one interior, each of which must

have shape functions associated with them. The corners in Figure 3 are labeled C1 to C3, and the

5



p Corner Modes Edge Modes Internal Modes Total DOF

1 3 3

2 3 3 6

3 3 6 1 10

4 3 9 3 15

5 3 12 6 21

6 3 15 10 28

7 3 18 15 36

8 3 21 21 45

Table 2. Degree of freedom chart for triangular elements

coordinates of the corners in a (�; �) coordinate system are located at locations (0; 0), (1; 0), and (0; 1) in

the parametric space.

There is one mode associated with each corner for polynomial levels of p = 1 and up, given by

NC1 = 1� � � �; (40)

NC2 = �; (41)

and

NC3 = �: (42)

Starting with p = 2, three edge modes are added to the total number of degrees of freedom for the

element. Thus, for any given polynomial order, we have 3(p� 1) edge modes, de�ned by

N
(1)

Ei = (1� � � �)�i(�); (43)

N
(2)

Ei = ��i(�); (44)

and

N
(3)

Ei = (1� � � �)�i(�): (45)

For polynomial levels of degree p = 3 and up, internal modes become evident in the triangular element.

The internal mode for a p level of 3 is given by

N
(0)
3 = L1L2L3; p � 3 (46)

where the functions L1, L2, and L3 are de�ned as

L1 = 1� � � �; L2 = �; and L3 = �: (47)

For higher modes, we can write the shape functions in terms of the shape functions for p = 3. That

is, the shape functions for p = 4 and up have kernels composed of the shape functions (46). For p = 4,

there are two additional shape functions, given by

N
(0)

4;f1;2g
= N

(0)
3 fP1(L2 � L1); P1(2L3 � 1)g: p � 4 (48)

The remaining internal modes are given by

N
(0)

5;f1;2;3g
= N

(0)
3 fP2(L2 � L1); P2(2L3 � 1); P1(L2 � L1)P1(2L3 � 1)g; p � 5 (49)

N
(0)

6;f1;2;3;4g
= N

(0)
3 fP3(L2�L1); P3(2L3�1); P2(L2�L1)P1(2L3�1); P1(L2�L1)P2(2L3�1)g; p � 6

(50)

6
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a
Ω

Ω

Figure 4. Single-element meshes for full and quarter models.
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Figure 5. Dimensionless torsional constant versus p-level for a square beam.

N
(0)

7;f1;2;3;4;5g
= N

(0)
3 fP4(L2 � L1); P4(2L3 � 1); P3(L2 � L1)P1(2L3 � 1); P1(L2 � L1)P3(2L3 � 1);

P2(L2 � L1)P2(2L3 � 1)g; p � 7 (51)

and

N
(0)

8;f1;2;3;4;5;6g
= N

(0)
3 fP5(L2 � L1); P5(2L3 � 1); P4(L2 � L1)P1(2L3 � 1); P1(L2 � L1)P4(2L3 � 1);

P3(L2 � L1)P2(2L3 � 1); P2(L2 � L1)P3(2L3 � 1)g: p � 8 (52)

The number of equations associated with each polynomial order for triangular elements is given in

Table 2. As can be seen from Table 2, there is not much di�erence between the total number of degrees

of freedom associated with a triangular element and that of the quadrilateral element, shown in Table 1.

Thus, it is preferable to use quadrilateral elements when de�ning geometry.

Torsion of Beams with Square Cross-Sections

In this section, we demonstrate the use of the p-version �nite element method for torsion problems. If

we consider a beam with a square cross-section, then we can write the exact solutions for the maximum

torsional shear stress and torsional constant as (Sokolniko� [6], p. 131-132)

�max = ��a

(
1�

8

�2

"
1

cosh�=2
+

1X
n=1

1

(2n+ 1)2cosh(2n+ 1)�=2

#)
(53)
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Figure 6. Dimensionless torsional shear stress versus p-level for a square beam.

and

D = �a4

"
1

3
�

64

�5

1X
n=0

tanh(2n+ 1)�=2

(2n+ 1)5

#
; (54)

where a is the length of one of the sides of the cross-section, � is the shear modulus of the beam material,

and � is the angle of twist per unit length of the beam.

To compare the analytical solutions (53) and (54) to the �nite element solutions, we consider two

di�erent meshes. First, if we consider the left mesh of Figure 4, we have a single element representing

the domain 
. Next, by exploiting the double symmetry of the cross-section, we can model one-quarter

of the cross-section, yielding the second mesh in Figure 4. We note that in this mesh, on two sides we

have @ =@n = 0.

In Figure 5 we show the convergence of the normalized torsional constant D=�a4 as the polynomial

order of the solution is increased. The at, horizontal line is the value given by equation (54). It should

be noted that for the full model, there are no computed values of the normalized torsional constant until

p = 4. The reason for this is that from p = 1 to p = 3, there are only corner and edge modes. Since

 = 0 on the boundary, then clearly the solution contains no active degrees of freedom, and the solution

is forced to zero. However, at p = 4, we obtain the �rst internal mode, and its value is reected in the

computation of a non-zero torsional constant. At p = 4, the full model mesh only has the single active

degree of freedom, yet its computed torsional constant value has less error than the quarter model for

p = 3, which has more degrees of freedom. Thus, it appears that additional degrees of freedom are not

terribly important in evaluating function values.

However, when shear stresses, which are derivatives of the trial solution, are evaluated, the calculated

ux values are somewhat dependent upon the order of the solution, as seen in Figure 6. Again, for

p = 1 to p = 3, the one-element full model solution is identically zero since all of the degrees of freedom

are constrained to zero from the  = 0 restriction. Thus, the derivatives are also zero. However, with

increasing p, we do see the existence of a derivative value for the full model, and over the entire p range,

the quarter-model shows exceptional convergence.

Torsion of an Elliptically Shaped Beam

The simple cross-section of the previous section can be expanded to a beam with an elliptical cross-section.

The ellipse provides yet another known theoretical solution against which the numerical �nite element

solution can be compared. In this case, the maximum shear stress due to torsion, which occurs closest to

8
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Figure 7. Two element mesh for quarter-model of elliptical section.
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Figure 8. Dimensionless torsional constant versus p-level for an elliptical beam.

the major and minor axes of the ellipse, and the torsional rigidity are given by (Fung [4], p. 170)

�max = 2��
a2b

a2 + b2
(55)

and

D = �
�a3b3

a2 + b2
; (56)

where a and b are the major and minor axes of the ellipse.

For the comparison, a simple two-element mesh representing one-quarter of the entire ellipse is em-

ployed. One quadrilateral element and one triangular element are used, as shown in Figure 7. For

an ellipse with a = 3 and b = 1:5, we �nd that for p � 2, there is good agreement with the normalized

torsional rigidity D=�, as shown in Figure 8. Likewise, there is rapid convergence of the normalized shear

stress �max=�, as shown in Figure 9. The reason for the quick convergence is that the exact solution is

given by (Fung [4], p. 169)

 = ���
a2b2

a2 + b2

�
x2

a2
+
y2

b2
� 1

�
: (57)

Since (57) is quadratic in x and y, the theoretical solution is quickly converged for p = 2, which is shown

in the graphs for the torsional constant and the maximum shear stress.

Torsion of a Generic Section with Cutouts

Textbook solutions for the torsion problem can be demonstrated with �nite element methods easily, but

they are fairly uninteresting and show only that we can match solutions. To demonstrate the e�ectiveness

9
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Figure 9. Dimensionless torsional shear stress versus p-level for an elliptical beam.

ψ=0

ψ=0

ψ=0

Figure 10. Finite element mesh of a generic cross-section.

of the �nite element method to torsion, especially with p-�nite elements, we examine the torsion of the

cross-section shown in Figure 10. The cross-section has symmetry about two axes, so only one-quarter of

the cross-section is modeled. Along the outside of the section, the function  is identically zero. Likewise,

along the perimeter of the cutouts, the stress function is forced to zero. Along the straight edges, which

represent lines of symmetry, we have the condition @ =@n = 0. The �nite element mesh is a seven-element

mesh using eight noded elements to achieve the curvature along the edges.

The cross-section is excellent at demonstrating the torsion of multiply connected regions which would

otherwise be left unsolved by analytical means. The torsion analysis was conducted with element shape

functions from p = 2 to p = 8. The results for p = 1 are inconclusive since the p = 1 shape functions are

corner modes, and the mesh requires that  = 0 at the corners. The convergence of the torsional constant

is shown in Figure 11, whereas the shear stress at a point in the left cutout is shown in Figure 12. Like

the cases shown previously, we �nd rapid convergence for both the function value and the �rst derivative.

Finally, an error estimate of the solution is plotted in Figure 13. Two separate mesh strategies

were employed in this analysis. The �rst mesh is the same as shown in Figure 10. That is, the mesh

remains the same, but the polynomial order of the solution is increased from p = 2 to p = 8. The second

mesh strategy is to take the mesh of Figure 10 and subdivide the areas into smaller regions with uniform

h-re�nement. That is, each element is subdivided into n2 elements, where n is the number of elements

per side. This yields a uniform h-re�nement and comparison curve to demonstrate the convergence of

the new technique. The error in the mesh is plotted in Figure 13 versus the number of active degrees of

freedom in the solution, and it is de�ned as

� = jDmesh �D1j; (58)

where Dmesh is the torsional constant corresponding to the current mesh andD1 is the torsional constant
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Figure 11. Torsional constant versus p-level of the solution.
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Figure 12. Torsional shear stress versus p-level of the solution.
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Figure 13. Error estimates for the p-element and re�ned h-element meshes.

computed for a mesh with p = 8 and a signi�cant number of elements. In Figure 13, we note the

exceptional performance of the p-version mesh. While the re�ned h mesh converges at virtually a constant

rate, the p-element mesh, composed of just 6 elements, rapidly converges with the addition of higher order

polynomials.

Conclusions

As demonstrated by the examples, implementing the p-version of the �nite element method is bene�cial

in achieving highly accurate, converged solutions to the torsion boundary value problem. The exibility

of increasing the �delity of the solution by changing the polynomial order rather then remeshing to �nd

appropriate element size saves both time and e�ort without sacri�cing numerical accuracy. Indeed, it was

shown that for equal degrees of freedom, the p-method far outperforms the h-method in the calculation

of the torsional constant. While no results for the shear stresses were presented with the general cross-

section, we would expect similar if not better characteristics, as the h-method is limited to at best �rst

derivatives which vary linearly in the element space. However, for the p-method, the derivatives are of

higher order, giving them the ability to match gradients better.
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